CHAPTER 12

KEEPING THE FAITH

Fidelity in Technological Tools for
Mathematics Education

Thomas P. Dick

There are many different audiences that can benefit from the insights that
can arise from thoughtful research on the use of technology in the teach-
ing and learning of mathematics. These audiences include classroom
mathematics teachers, mathematics curriculum developers, educational
policymakers, and the designers of the technological tools. The purpose
of this chapter is to consider, from the perspective of the tool designer,
the lessons that can be learned from research.

As the title indicates, the theme of this chapter is fidelity—technology
designed for use in mathematics education should be faithful to some
basic principles. We will refer to these principles as pedagogical fidelity,
mathematical fidelity, and cognitive fidelity.

Before providing specifics of what we mean by “keeping the faith” ped-
agogically, mathematically, and cognitively, it is important to note that
these remarks are aimed at designers of technological tools intended pri-
marily to facilitate the learning of mathematics. There are, of course, tools
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that are designed primarily for the application of mathematics that enjoy
extensive use in mathematics classrooms. For example, a computer
spreadsheet is a tool that has been heavily adapted for use in the mathe-
matics classroom, in ways that likely were never imagined by the designers
of the first spreadsheets. For a tool such as a spreadsheet, the lessons to be
learned from research are actually intended for the educational adapters
(classroom teachers, curriculum developers, etc.), not the spreadsheet
designers.

We will not go so far as to say that our distinction between designed
and adapted tools is universally easy to apply. For example, the suite of
features found on some computer algebra systems (CASs) could be argued
to be a mix of tools for mathematics learning and mathematics applica-
tions.

PEDAGOGICAL FIDELITY

At the risk of invoking an educational cliché, we take as axiomatic that
students learn mathematics by doing mathematics. But what does it mean
to “do mathematics?” Suppose we make our axiom a bit more explicit.

Axiom: Students learn mathematics by taking mathematical actions (e.g.,
transforming, representing, manipulating) on mathematical objects (e.g.,
symbolic expressions, graphs, geometric figures, physical models), observ-
ing the mathematical consequences of those actions, and reflecting on their
meanings.

Students’ reflections on mathematical consequences of mathematical
actions on mathematical objects are the fuel for feeding the cycle of pre-
diction-conjecture-testing that ultimately leads to proofs or refutations.

A technological tool stays true to this pedagogical axiom to the degree
that its use is perceived transparently by the student to further these pur-
poses. That is, for a tool to be pedagogically faithful, the student should
perceive the tool as (a) facilitating the creation of mathematical objects,
(b) allowing mathematical actions on those objects, and (c) providing
clear evidence of the consequences of those actions.

Keeping the pedagogical faith is evidenced most clearly in the organi-
zation of the user interface of a technological tool. For example, consider
something as mundane as the menu organization of a software package.
Clearly the software will have general commands common to almost all
packages (file management, editing functions such as cut/copy/paste,
etc.). We would also expect the software to have commands that corre-
spond to creating mathematical objects, taking actions on those objects,
and displaying or reporting information. There is no single best way to
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organize this mix, but if the designer stays faithful to the pedagogy princi-
ple, then that organization should be made with the clear goal of facilitat-
ing the mathematical moves with as few distractions as possible. For
example, a graphing software package should not mix parameter controls
that are cosmetic with those having mathematical substance. Font charac-
teristics for labels or measurements are user preferences that should be
quite separate from window scaling options.

The pedagogical faithfulness of a technological tool can be reflected in
how a user would typically describe the steps in an activity or procedure. A
pedagogically faithful tool will lend itself to describing moves in terms of
interactions with the mathematics (e.g., “I graphed this function,” “I cre-
ated this triangle,” or “I measured this area”) rather than in terms of
interactions with the tool (e.g., “I went to this menu,” “I changed this
mode,” or “I set the preferences to”).

MATHEMATICAL FIDELITY

A technological tool must stay true to the mathematics. If a student per-
ceives that a virtual mathematical object has been created through the use
of a tool, then the characteristics and behavior of that object in the tech-
nological arena should reflect accurately the mathematical characteristics
and behavior that the idealized object should have. (Platonism is not a
bad philosophy for the technological tool designer!)

While the goal of mathematical fidelity may seem obvious, in practice it
can be quite difficult to implement. Some of the obstacles are inherent
and due to technological limitations. Other problems are due to conscious
design choices that put ease of use at a higher priority than faithfulness to
mathematical structure.

For example, design choices made in the handling of implicit multipli-
cation in algebraic expressions may make life easier for the user in certain
circumstances, but betray mathematical conventions in other circum-
stances. To allow users to enter an expression such as sin 2x as the conven-
tional shorthand for sin(2x) means that implicit multiplication must have
a higher precedence than function application. This convenience puts us
in a bizarre situation in which explicit multiplication notation has an
entirely different mathematical interpretation from implicit multiplica-
tion: sin 2*x would mean (sin(2))*x, since the evaluation of the sine func-
tion (at 2) would take precedence over the explicit multiplication by x.

A common technological limitation has to do with the modeling of
continuous phenomena with discrete structures. This goes far beyond the
usual caveats of interpreting displayed numerical results represented as
finite precision terminating decimals. The hidden traps are encountered
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when the results of such computations are generated and used but are not
seen by the student.

For example, suppose a geometry tool that provides features for the
creation and manipulation of lines in the plane uses the Cartesian slope
of the line as one of the underlying defining parameters. That is, the tool
stores a line internally using two pieces of data: the slope of the line and a
reference point (such as the y-intercept). Of course, the case of a vertical
line would need to be handled differently by such a tool. The tool could
use this very compact bundle of data not only to generate a visual display
of the line in a given window but also to perform actions such as creating
a parallel or perpendicular line to a given line or testing for the parallel-
ism or perpendicularity of two given lines. The real problems arise when
dealing with lines that are nearly vertical or horizontal. Precision limita-
tions could result in gross (and visually obvious) errors. Indeed, my first
experience attempting to create a perpendicular to a very steep (visually
almost vertical) line on an early dynamic geometry package resulted in a
line that was nowhere near horizontal visually.

Perhaps the worst “conscious” offenses have been made with how tech-
nological tools deal with functions. The mathematical concept of function
is arguably the single most important in all of mathematics, so this lack of
faithfulness is particularly troubling. In most cases, the fundamental error
made with functions is to treat them as expressions rather than mappings
with domains. The mathematics community itself is somewhat to blame for
the situation, given the common convention of adopting implicit domains
for functions in certain contexts. For example, it is typical in calculus to
assume that a functional expression y = f{x) defines a real-valued map-
ping having as its domain the largest subset of real numbers x for which
the expression f{x) results in a real number. Thus, one can “define” a func-

tion simply by writing y = 1 provided it is understood that the

x-2’
implied domain of the function is {x : xeR, x#2}.

We are already on shaky ground pedagogically with such conventions,
for while the expert may be careful to account for these implicit domains
in composing functions, a student may be blissfully unaware of them. The
risk is compounded when a student uses a technological tool that
“defines” functions without reference to any domain. For example, the

equations y = 2In(x) and y = In(x%) would define different functions hav-
ing different implicit domains using the usual calculus convention. The
domain of the first is the set of positive real numbers and the domain of
the second is the set of nonzero real numbers, although it is true that the
two functions take on the same values at each point in the intersection of
their domains.
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Now consider the function y = |In(x)|. What is its domain? If we follow
the chain of compositions, x — In(x) = | In(x) {, the implicit domain would
be the set of positive real numbers. However, many computer and calcula-
tor graphers will plot this function as if its domain were the set of all non-
zero real numbers, since the modulus (absolute value) of the complex
number In(x) that results for x < 0 gives a final result of a real number.

The algebraic “simplification” of an expression can effectively change
the domain (and hence change the definition of the function). Consider

the function y = mxnﬁnﬁw , implicitly defined on the domain of all non-
dy _ 1 -1 _ 1

zero real numbers. lts derivative is given by

drx 2,27 L2+1°
a _+mu a a

The final simplification of the algebraic expression for the derivative
function results in an expression whose implied domain is the set of all
real numbers, including x = 0. Clearly, the derivative of a function cannot
be defined at a point that is not in the domain of the function! At this
point, we must make the domain of nonzero real numbers explicit in order
to maintain the mathematical fidelity of our actions (differentiation fol-
lowed by simplification). This particular example is sometimes used as a
test of the integrity of computer algebra systems.

It is unrealistic to expect the mathematics community to suddenly drop
conventions that have the inertia of historical usage behind them. Human
users of symbols must be aware of the implicit assumptions and contexts
for their usage (Is f (x) = 3 an equation or a definition of a constant func-
tion?) and ignore them at their own risk. To use technological tools intel-
ligently in arenas in which implicit assumptions and contexts lurk, there
need to be ways of explicitly informing the machine. One strategy has
been the setting of modes or preferences that correspond to these explicit
assumptions. However, for tools that aim to handle many different possi-
ble mathematical contexts, the number of mode/preference settings can
quickly become unwieldy.

COGNITIVE FIDELITY

Technological tools for mathematics education should be faithful to stu-
dents’ cognitive processes. Unlike the application of a technological tool
in the “real world,” there should be more emphasis on illuminating math-
ematical thinking processes than simply arriving at “black box” final
results as efficiently as possible.

In the context of intelligent tutoring systems, Beeson (1989) has used
the term “cognitive fidelity” to refer to the degree to which the com-
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puter’s method of solution resembles a person’s method of solution. In
that same context, Beeson discusses the idea of a “glass box”—a computer
program that allows the user to see how the answer is produced, meaning
that a program is most useful in instruction if its (visible) inner Eo_.Esmm
are cognitively faithful. (We would note that this usage of the term “glass
box” applied to a computer program is a bit different from the term
“white box” used to describe instructional activity with a CAS (see, for
example Cedillo & Kieran, 2003). The machine algorithms used by a tool
to accomplish a result may bear little resemblance to conceptually based
procedures a person typically would use. For example, the numeric root
finder or equation solver found on most graphing calculators generally
uses techniques far more sophisticated than those with which its users
(students) would be familiar.

Some of the calculus reform projects funded by the National Science
Foundation did not have to do so much with curriculum development as
they did with the building of a glass box front end (i.e., an additional
interface layer through which the user works instead of the usual inter-
face) to a CAS. A CAS generally uses some very sophisticated “black box”
symbolic integration techniques to produce antiderivatives. A classical

integration by parts (udv = uv—[vdu) completed “by hand” could be

performed quite differently by a CAS. A glass box for integrating by parts
might require the student to choose the « and dy, calculate the corre-
sponding du and v (with the help of the CAS, perhaps) and then instruct
the CAS to perform the integration by parts using the student’s choices.

CHALLENGES FOR THE FUTURE:
THE NEED FOR AUTHORING TOOLS

The greatest unrealized challenge is to bridge the gap between the vision
of the educational practitioners and the technical expertise of the educa-
tional tool designer. Specifically, how do we efficiently move from the idea
for a mathematics learning activity to the implementation of a technolog-
ical tool that facilitates that activity and remains faithful to it> Currently,
the vast majority of classroom teachers and curriculum developers find
themselves adapting their ideas and activities to the available tools. In the
process, the original ideas may be compromised. In some rare cases, the
practitioner may have the technological savvy or programming knowl-
edge (or sufficient communication access to those who do) to design or
adapt the tool to the activity in a way that does not compromise the origi-
nal vision.
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What we need to move toward is the notion of authoring tools—that is,
tools for building tools—that provide a kind of “macro” construction kit
for practitioners to create their own learning microworlds for students,
complete with user-friendly interfaces and robust operational integrity.
We have seen some exciting possibilities for how technology can be used
to aid mathematics learning and teaching that have emerged in the hands
of a few developers who share both educational vision and technical
expertise. Now think about a future in which the number of such develop-
ers is multiplied literally by the thousands. Authoring tools that could
truly enable the classroom teacher or curriculum developer to implement
their ideas directly into reliable ready-to-use technological tools for math-
ematics learning would shift our language from technological innovation
to educational innovation.

In terms of the fidelity principles discussed in this chapter, the struc-
ture of the authoring tools themselves could help practitioners who are
developers adhere to those principles.

A dream perhaps? Keep the faith!
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